The Doherty Institute offers many undergraduate, postgraduate and professional development opportunities, complementing its research Themes and Cross-cutting Disciplines.
Through the University of Melbourne, the Doherty Institute offers undergraduate (Honours) and graduate (Masters, PhD, MPhil) courses. Students will generally be based at the Doherty Institute, however, in certain cases, they may be based at affiliated institutes with a co-supervisor at the Doherty Institute, including (but not limited to) the Murdoch Children’s Research Institute. Research projects are available through several departments at the University of Melbourne including the Department of Microbiology and Immunology, the Department of Medicine and the Doherty Department.
The Department of Microbiology and Immunology is a research and research-led teaching department of the School of Biomedical Sciences in the Faculty of Medicine, Dentistry and Health Sciences. The Department delivers specialised courses in bacteriology, virology and immunology, along with more generalist infection and immunity services.
The Department of Medicine also sits within the Melbourne Medical School and offers projects through the Doherty Institute that focus on malaria, global and maternal and child health and infectious diseases services.
The Doherty Department sits within the Faculty of Medicine, Dentistry and Health Sciences. Projects available within the Doherty Department focus on HIV and clinical and translational research in infectious diseases across Indigenous health, public health and host genomics.
Level of study
At the undergraduate level, the Doherty Institute is home to The University of Melbourne’s Department of Microbiology and Immunology, which delivers specialised courses in bacteriology, virology and immunology along with more generalist infection and immunity subjects.
At the postgraduate level, the Doherty Institute has more than 100 PhD students benefitting from high-level research training in microbiology, immunology, epidemiology, clinical and translational research, infectious diseases surveillance, outbreak investigations and more. Research students benefit from mentoring from world-class scientists in an environment where cutting-edge research is conducted side-by-side with public health laboratories.
Student stories
Meet our student project supervisors
Lab groups offering student projects
-
Barrow group
The Barrow group is interested in innate immune recognition programs, in particular a new immunological recognition strategy termed ‘growth factor surveillance’.
-
Bioassay Group
The Bioassay group sits in the Bioanalytical Sciences Department within the Recombinant Product Development division (Parkville). The overall aim of this group is to develop fit-for-purpose cell-based assays to support clinical trials and for the functional characterization of new products.
-
Coin group
The Coin group develops genomic and transcriptomic tools to develop biomarkers for rapid characterization of disease state and prediction of drug susceptibility, with the aim of decreasing the time taken from hospital admission to administering the right treatment.
-
Davies group
The Davies group aims to apply genome sequencing methodologies and bioinformatics approaches to understand the evolution and transmission of bacterial pathogens.
-
Dunstan group
The Dunstan group uses host and pathogen genomics to understand infectious diseases. We perform genome-wide association studies of the human host, genomic studies of the infecting pathogen, and investigate the interaction of both genomes in disease.
-
Fazakerley group
The Fazakerley group’s main interest is the transmission and pathogenesis of arthropod vector-borne (arbovirus) infections of the central nervous system (CNS).
-
Godfrey group
The Godfrey group has a strong track record in the field of unconventional T cells with a focus on CD1 restricted cells (NKT cells); MR1-restricted T cells (MAIT cells) and gamma delta T cells (1). These cells play a key role in many different diseases.
-
Haque group
The Haque group is interested in studying T cell responses during infectious disease and in cancer. We specialize in studying these cells using a relatively recent technique called “single-cell genomics”.
-
Howden group
The Howden laboratory is focused on understanding how various antimicrobial resistant pathogens cause disease and develop antimicrobial resistance.
-
Kallies group
The Kallies group has done pioneering work in understanding the role of immune cells in infection, metabolic diseases and cancer.
-
Kent group
The Kent group has an interest in understanding how the immune response can be harnessed in the control of infectious pathogens including SARS-CoV2, HIV, Mycobacterium tuberculosis and influenza.
-
Lawson group
The Lawson group is focused on understanding how protein misfolding in the central and enteric nervous system gives rise to diseases such as prion and Parkinson’s diseases, with a focus on diagnosis, treatment and prevention, as well as understanding how the normal function of these proteins may contribute to diseases such as cancer.
-
Lewin group
The main focus of the Lewin group is to understand why HIV infection persists on antiretroviral therapy and to develop new strategies to eliminate latent HIV.
-
Mantamadiotis group
The Mantamadiotis group’s research aims to understand how the tumor microenvironment, including immune cells, contribute to oncogenesis and how to modulate the immune system to improve current brain cancer therapy.
-
McCluskey group
The McCluskey group are an internationally leading laboratory in MAIT cell research, having made significant breakthrough discoveries in MAIT cell immunity.
-
McDevitt group
The chemistry in every cell in all forms of life is dependent on metal ions. Research in the McDevitt group seeks to understand how bacterial pathogens acquire and use metal ions and how this shapes the host-pathogen interaction during infection.
-
Mackenzie group
The Mackenzie group investigates the intracellular replication of flaviviruses and noroviruses to understand how replication influences cellular functions and immune dysfunction.
-
McVernon group
The McVernon group uses established and emerging biostatistical, epidemiologic and modelling methods to address infectious diseases questions of public health relevance.
-
Mueller group
Research in the Mueller group is focused on examining immune responses to acute and chronic viral infections and to tumours.
-
National Centre for Antimicrobial Stewardship
Research undertaken by NCAS aims to understand current antimicrobial prescribing behaviour in human and animal healthcare settings, and develop, implement and evaluate practical strategies to improve the way that antimicrobial drugs are used within Australia.
-
Newton group
The Newton group uses a range of molecular and cell biology approaches to investigate the host-pathogen interactions that occur during infection with intracellular bacterial pathogens.
-
Pidot group
The Pidot group is a multi-disciplinary team that works across microbiology, genomics and biological chemistry to identify new antimicrobials and investigate their biosynthesis.
-
Purcell group
The Purcell group investigates the HIV-1 and HTLV-1 human retroviruses that cause AIDS, leukaemia and inflammatory pathogenesis respectively.
-
Reading group
The Reading group have expertise in understanding viral attachment factors, cellular receptors and entry pathways, virus-induced activation of host genes and the mechanisms by which intracellular host proteins can block virus replication.
-
Revill group
The Revill group’s work is focused on the molecular virology of the hepatitis B virus (HBV), which is one of the most important human pathogens, infecting 257 million people worldwide, including 239,000 Australians.
-
Rogerson group
The Rogerson group studies the pathogenesis and immunity of malaria in the human host, using in vitro models and clinical samples from individuals in malariaaffected countries.
-
Satzke group
The Satzke group conducts research in a clinicallyrelevant context. We focus on the microbiology of two pathogens of major global health importance (pneumococcus and Group A Streptococcus) to understand their pathogenesis, interaction with viruses, and how infections can be best prevented with vaccines.
-
Scott group
The Scott lab focuses on the application of mass spectrometry (MS)-based methodologies to characterise microbial systems. The key focus of the lab is understanding how pathogens of the Burkholderia genus cause disease and why proteins decorated with carbohydrates influence Burkholderia pathogenesis.
-
Stinear group
The Stinear group study bacteria that can infect humans and cause disease and we study human immune responses to those bacteria. We make mutants. We uncover molecular mechanisms of pathogenesis. We discover new antibiotics. We make vaccines. We create new diagnostic tests. We track disease outbreaks, . We sequence genomes and we expose dodgy science.
-
Strugnell group
The Strugnell Lab has two major research interests. Firstly, in driving immunity to Salmonella spp. The other major interest is in Klebsiella pneumoniae, an encapsulated opportunistic pathogen that readily forms biofilms.
-
VICNISS group
The Victorian Healthcare Associated Infection Surveillance System (VICNISS) Coordinating Centre is responsible for surveillance of healthcare-associated infections in Victorian public and private hospitals, and the aged care sector.
-
Villadangos group
The Villadangos group studies the first event that triggers adaptive immune responses: the presentation of pathogen or tumour antigens to T cells by Dendritic Cells, B cells and Macrophages.
-
Wakim group
The Wakim group research focus is understanding how T cells resident along the respiratory tract can be utilised to protect against influenza virus infection.
-
WHO Collaborating Centre for Reference and Research on Influenza
A key goal of our work is to identify strategies to improve the immunogenicity and, therefore, effectiveness of influenza vaccines.